22 research outputs found

    Short-term inhibition of TERT induces telomere length-independent cell cycle arrest and apoptotic response in EBV-immortalized and transformed B cells

    Get PDF
    open7siBesides its canonical role in stabilizing telomeres, telomerase reverse transcriptase (TERT) may promote tumorigenesis through extra-telomeric functions. The possible therapeutic effects of BIBR1532 (BIBR), a powerful TERT inhibitor, have been evaluated in different cellular backgrounds, but no data are currently available regarding Epstein-Barr virus (EBV)-driven B-cell malignancies. Our aim was to characterize the biological effects of TERT inhibition by BIBR on EBV-immortalized lymphoblastoid cell lines (LCLs) and fully transformed Burkitt's lymphoma (BL) cell lines. We found that BIBR selectively inhibits telomerase activity in TERT-positive 4134/Late and 4134/TERT+ LCLs and EBV-negative BL41 and EBV-positive BL41/B95.8 BL cell lines. TERT inhibition led to decreased cell proliferation, accumulation of cells in the S-phase and ultimately to increased apoptosis, compared with mock-treated control cells. All these effects occurred within 72 h and were not observed in BIBR-treated TERT-negative 4134/TERT- and U2OS cells. The cell cycle arrest and apoptosis, consequent upon short-term TERT inhibition, were associated with and likely dependent on the activation of the DNA damage response (DDR), highlighted by the increased levels of γH2AX and activation of ATM and ATR pathways. Analyses of the mean and range of telomere lengths and telomere dysfunction-induced foci indicated that DDR after short-term TERT inhibition was not related to telomere dysfunction, thus suggesting that TERT, besides stabilizing telomere, may protect DNA via telomere-independent mechanisms. Notably, TERT-positive LCLs treated with BIBR in combination with fludarabine or cyclophosphamide showed a significant increase in the number of apoptotic cells with respect to those treated with chemotherapeutic agents alone. In conclusion, TERT inhibition impairs cell cycle progression and enhances the pro-apoptotic effects of chemotherapeutic agents in TERT-positive cells. These results support new therapeutic applications of TERT inhibitors in EBV-driven B-cell malignancies.openCeleghin, Andrea; Giunco, Silvia; Freguja, Riccardo; Zangrossi, Manuela; Nalio, Silvia; Dolcetti, Riccardo; De Rossi, AnitaCeleghin, Andrea; Giunco, Silvia; Freguja, Riccardo; Zangrossi, Manuela; Nalio, Silvia; Dolcetti, Riccardo; DE ROSSI, Anit

    Host factors and early treatments to restrict paediatric HIV infection and early disease progression

    Get PDF
    open6noA body of evidence indicates that a threshold level of the virus is required to establish systemic and persistent HIV infection in the host and that this level depends on virus-host interactions. Mother-to-child transmission (MTCT) of HIV is the main source of paediatric HIV infection and occurs when the host's immune system is still developing. Thus, innate resistance and immunity, rather than adaptive immune response, may be the main drivers in restricting the establishment of HIV reservoirs and the long-lived persistence of HIV infection in infants. Genetic variations in HIV co-receptors and their ligands, as well as in Toll-like receptors and defensins, key elements of innate immunity, have been demonstrated to influence the risk of perinatal HIV infection and disease progression in HIV-infected infants. Early treatments with combined antiretroviral therapy (cART) restrict paediatric infection by reducing the level of the transmitted/infecting virus to below the threshold required for the onset of immune response to the virus and also significantly reduce HIV reservoirs. However, despite long periods with no signs and symptoms of HIV infection, all early cART-treated children who later discontinued cART had a rebound of HIV, except for one case in whom a period of viral remission occurred. Which parameters predict viral remission or viral rebound after cART discontinuation? Could early cART prevent rather than just reduce the establishment of viral reservoirs? And, if so, how? Answers to these questions are also important in order to optimise the use of early cART in infants at high risk of HIV infection.openGianesin, Ketty; Petrara, Raffaella; Freguja, Riccardo; Zanchetta, Marisa; Giaquinto, Carlo; DE ROSSI, AnitaGianesin, Ketty; Petrara, Raffaella; Freguja, Riccardo; Zanchetta, Marisa; Giaquinto, Carlo; DE ROSSI, Anit

    Impact of monotherapy on HIV-1 reservoir, immune activation, and co-infection with Epstein-Barr virus

    Get PDF
    Abstract Objectives Although monotherapy (mART) effectiveness in maintaining viral suppression and CD4 cell count has been extensively examined in HIV-1-infected patients, its impact on HIV-1 reservoir, immune activation, microbial translocation and co-infection with Epstein-Barr Virus (EBV) is unclear. Methods This retrospective study involved 32 patients who switched to mART; patients were studied at baseline, 48 and 96 weeks after mART initiation. Thirty-two patients who continued combined antiretroviral therapy (cART) over the same period of time were included in the study. Markers of HIV-1 reservoir (HIV-1 DNA and intracellular HIV-1 RNA) were quantified by real-time PCR. Markers of T-(CD3(+)CD8(+)CD38(+)) and B-(CD19(+)CD80/86(+) and CD19(+)CD10-CD21(low)CD27(+)) cell activation were evaluated by flow cytometry. Plasma levels of microbial translocation markers were quantified by real-time PCR (16S ribosomal DNA and mitochondrial [mt] DNA) or by ELISA (LPS and sCD14). EBV was typed and quantified by multiplex real-time PCR. Results At baseline, no differences were found between mART and cART groups. Three (10%) mART-treated patients had a virological failure vs none in the cART group. Levels of HIV-1 DNA, intracellular HIV-1 RNA and EBV-DNA remained stable in the mART group, while decreased significantly in the cART group. Percentages of T-and B-activated cells significantly increased in the mART-treated patients, while remained at low levels in the cART-treated ones (p = 0.014 and p<0.001, respectively). Notably, levels of mtDNA remained stable in the cART group, but significantly rose in the mART one (p<0.001). Conclusions Long-term mART is associated with higher levels of T-and B-cell activation and, conversely to cART, does not reduce the size of HIV-1 reservoir and EBV co-infection

    Premature aging and immune senescence in HIV-infected children

    Get PDF
    Objective: Several pieces of evidence indicate that HIV-infected adults undergo premature aging. The effect of HIV and antiretroviral therapy (ART) exposure on the aging process of HIV-infected children may be more deleterious since their immune system coevolves from birth with HIV. Design: Seventy-one HIV-infected (HIV+), 65 HIV-exposed-uninfected (HEU), and 56 HIV-unexposed-uninfected (HUU) children, all aged 0\u20135 years, were studied for biological aging and immune senescence. Methods: Telomere length and T-cell receptor rearrangement excision circle levels were quantified in peripheral blood cells by real-time PCR. CD4+ and CD8+ cells were analysed for differentiation, senescence, and activation/exhaustion markers by flow cytometry. Results: Telomere lengths were significantly shorter in HIV+ than in HEU and HUU children (overall, P < 0.001 adjusted for age); HIV+ ART-naive (42%) children had shorter telomere length compared with children on ART (P = 0.003 adjusted for age). T-cell receptor rearrangement excision circle levels and CD8+ recent thymic emigrant cells (CD45RA+CD31+) were significantly lower in the HIV+ than in control groups (overall, P = 0.025 and P = 0.005, respectively). Percentages of senescent (CD28-CD57+), activated (CD38+HLA-DR+), and exhausted (PD1+) CD8+ cells were significantly higher in HIV+ than in HEU and HUU children (P = 0.004, P < 0.001, and P < 0.001, respectively). Within the CD4+ cell subset, the percentage of senescent cells did not differ between HIV+ and controls, but programmed cell death receptor-1 expression was upregulated in the former. Conclusions: HIV-infected children exhibit premature biological aging with accelerated immune senescence, which particularly affects the CD8+ cell subset. HIV infection per se seems to influence the aging process, rather than exposure to ART for prophylaxis or treatmen

    Premature aging and immune senescence in HIV-infected children.

    Get PDF
    Objective: Several pieces of evidence indicate that HIV-infected adults undergo premature aging. The effect of HIV and antiretroviral therapy (ART) exposure on the aging process of HIV-infected children may be more deleterious since their immune system coevolves from birth with HIV. Design: Seventy-one HIV-infected (HIV+), 65 HIV-exposed-uninfected (HEU), and 56 HIV-unexposed-uninfected (HUU) children, all aged 0-5 years, were studied for biological aging and immune senescence. Methods: Telomere length and T-cell receptor rearrangement excision circle levels were quantified in peripheral blood cells by real-time PCR. CD4+ and CD8+ cells were analysed for differentiation, senescence, and activation/exhaustion markers by flow cytometry. Results: Telomere lengths were significantly shorter in HIV+ than in HEU and HUU children (overall, P < 0.001 adjusted for age); HIV+ ART-naive (42%) children had shorter telomere length compared with children on ART (P = 0.003 adjusted for age). T-cell receptor rearrangement excision circle levels and CD8+ recent thymic emigrant cells (CD45RA+CD31+) were significantly lower in the HIV+ than in control groups (overall, P = 0.025 and P = 0.005, respectively). Percentages of senescent (CD28−CD57+), activated (CD38+HLA-DR+), and exhausted (PD1+) CD8+ cells were significantly higher in HIV+ than in HEU and HUU children (P = 0.004, P < 0.001, and P < 0.001, respectively). Within the CD4+ cell subset, the percentage of senescent cells did not differ between HIV+ and controls, but programmed cell death receptor-1 expression was upregulated in the former. Conclusions: HIV-infected children exhibit premature biological aging with accelerated immune senescence, which particularly affects the CD8+ cell subset. HIV infection per se seems to influence the aging process, rather than exposure to ART for prophylaxis or treatment. Keywords: immune activation, immune senescence, microbial translocation, pediatric HIV/AIDS, premature aging, telomere length, T-cell receptor rearrangement excision circl

    Early and Highly Suppressive ART are Main Factors Associated with Low Viral Reservoir in European Perinatally HIV Infected Children

    Get PDF
    Abstract BACKGROUND: Future strategies aiming to achieve HIV-1 remission are likely to target individuals with small reservoir size. SETTING: We retrospectively investigated factors associated with HIV-1 DNA levels in European, perinatally HIV-infected children starting ART <6 months of age. METHODS: Total HIV-1 DNA was measured from 51 long-term suppressed children 6.3 years (median) after initial viral suppression. Factors associated with log10 total HIV-1 DNA were analyzed using linear regression. RESULTS: At ART initiation, children were aged median [IQR] 2.3 [1.2,4.1] months, CD4% 37 [24,45] %, CD8% 28 [18,36] %, log10 plasma viral load (VL) 5.4 [4.4,5.9] copies/ml. Time to viral suppression was 7.98 [4.6,19.3] months. Following suppression, 13 (25%) children had suboptimal response [ 652 consecutive VL50-400 followed by VL<50] and/or experienced periods of virological failure [ 652 consecutive VL 65400 followed by VL<50]. Median total HIV-1 DNA was 43 [6,195] copies/10 PBMC.Younger age at therapy initiation was associated with lower total HIV-1 DNA (adjusted coefficient [AC] 0.12 per month older, p=0.0091), with a month increase in age at ART start being associated with a 13% increase in HIV DNA. Similarly, a higher proportion of time spent virally suppressed (AC 0.10 per 10% higher, p=0.0022) and absence of viral failure/suboptimal response (AC 0.34 for those with fail/ suboptimal response, p=0.0483) were associated with lower total HIV-1 DNA. CONCLUSION: Early ART initiation and a higher proportion of time suppressed are linked with lower total HIV-1 DNA. Early ART start and improving adherence in perinatally HIV-1 infected children minimize the size of viral reservoir.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal

    Immune activation in HIV-infected aging women on antiretrovirals--implications for age-associated comorbidities: a cross-sectional pilot study.

    Get PDF
    Persistent immune activation and microbial translocation associated with HIV infection likely place HIV-infected aging women at high risk of developing chronic age-related diseases. We investigated immune activation and microbial translocation in HIV-infected aging women in the post-menopausal ages.Twenty-seven post-menopausal women with HIV infection receiving antiretroviral treatment with documented viral suppression and 15 HIV-negative age-matched controls were enrolled. Levels of immune activation markers (T cell immune phenotype, sCD25, sCD14, sCD163), microbial translocation (LPS) and biomarkers of cardiovascular disease and impaired cognitive function (sVCAM-1, sICAM-1 and CXCL10) were evaluated.T cell activation and exhaustion, monocyte/macrophage activation, and microbial translocation were significantly higher in HIV-infected women when compared to uninfected controls. Microbial translocation correlated with T cell and monocyte/macrophage activation. Biomarkers of cardiovascular disease and impaired cognition were elevated in women with HIV infection and correlated with immune activation.HIV-infected antiretroviral-treated aging women who achieved viral suppression are in a generalized status of immune activation and therefore are at an increased risk of age-associated end-organ diseases compared to uninfected age-matched controls
    corecore